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EFFECTS OF STING-SUFFORT INTERFERENCE ON THE DRAG OF AN
OGIVE-CYLINDER BODY WITH AND WITHOUT A BOATTAIL
AT 0.6 TO 1.4 MACH NUMBER

By George Lee and James L. Summers
SUMMARY

Tests were conducted to determine the effects of sting-support
interference on the zero-lift drag of two bodies of revolution (with and
without boattailing). The sting support consisted of a constant-diameter
sting followed by a sting flare terminating in a cylindrical support.
Various sting diameters, sting lengths, and sting flare angles were
tested at Mach numbers of 0.6 to l.4 and a Reynolds number of 8 million,
based on model length.

In general, the addition of the sting support caused a foredrag
reduction and a decrease in base drag. The maximum interference occurred
at high subsonic speeds. At supersonic speeds, the interference decressed
rapidly and approached zero at & Mach number of 1ok,

For the model with boattailing supported on a l-inch-diameter sting
with a 12° flare angle, both foredrag and base drag were affected by
changes in sting length when the sting length was less than 6.0 and 6.5
base dlameters, respectively. The foredrag and base drag were affected
by changes in sting dismeter for the entire range of Mach numbers.

For the model with the cylindrical afterbody, the foredrag was not
affected by the sting support. However, the base drag was dependent on
the sting dlemeter, but was independent of changes in sting length for
lengths greater thaen 5.5 base diameterse.

INTRODUCTION

The importance of understanding the effects of model support inter-
ference on wind-tunnel test results has long been recognized. This prob-
lem has been extensively studied at subsonic and supersonic speeds.
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However, with the recent development of the transonic wind tunnel, the
problem of support interference must be considered at transonlc speeds.
Information presented in references 1 to 6 shows that sting-support
interference is considerable, but adequate information for the design of
interference-free sting-~support systems is lacking. The purpose of the
investigation reported herein was to obtain adequate informstion for the
design of minimm interference sting-support systems for a boattall and
a cylﬂ.-nd.rica.l body with turbulent boundary layer at Mach numbers from 0.6
to 1.4,

SYMBOLS

A frontal area of model

Ap base aree of model
total drag minus base drag

CDF foredrag coefficient, A
- P A
Cpg base drag coefficient, - %8 " P B
4 A
T =0a575
CDBT boattall drag coefflclent, 2= [ Cpr dr, pressure drag
= 1000

over bosttail section (does not include base drag)

b=D

Cp pressure coefficient, —_E:TE

d diameter of the sting

D maximm dlemeber of the model (See fig. l.)

1 sting length of constant diemeter between model base and sting
flare

L model length

M Mach number

P static pressure

q dynamic pressure

r radius of body
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x distance from model nose

] gemivertex angle of the sting flare
Subscripts

B base

0 free stream

cr critical

APPARATUS AND MODELS

The investigation was conducted in the Ames 2- by 2-foot transonic
wind tunnel which is described in reference 7. The wind tunnel is of the
closed-circult, variable-density btype which employs a perforated test
section for continuous transonlc speed operation.

Geometric detells of the two models used in the lnvestigation are
presgnted in figure l. Both models had a fineness ratio of 10 with
Kérman oglve noses 50 percent of the body length. The boattall model
(boattall from 80 to 100 percent of the body length) had a base-diameter
to maximm-dismeter ratic of 0.575. The siope of the boattail at the
base 1s zero. For pressure measurements, 56 orifices of 0.02-inch
diameter were installed longitudinally along both models as shown in
figure 1.

For the investigatlon, the models were supported by various sting-
support configurations and by a side supporte A photograph of these
supports is shown in figure 2. A sketch of a typical sting-support con-
figuration is shown in figure 3. The sting support consisted of a
constant-diameter sting followed by a sting flare terminating in a
2-1/2-inch cylindrical supgort. For the slde support plus sting
configurations only the 12~ sting flare was used.

Total drag measurements were made by means of an internal strain-
gaege balance. Base pressure (i.e., base drag) was obtained by an orifice
inside the base of the models. Model pressures were indicated by a
liquid~in~-glass mancmeter and recorded photographically.
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TESTS AND DATA REDUCTION

The models. were tested at zero angle of attack throughout the Mach
number renge of 060 to l.4, inclusive. The Reynolds number was 8 mil-
lion, based on model length. Total drag and base pressure were messured
when the models were sting supported. When the side support was employed
(with or without stings), base-pressure and afterbody-pressure distribu-
tions were measured. The boundary-layer transition point was fixed at
20 percent of the body length on both models by & ring made of 0.032 inch
by 0.032 inch brass. The various sting configurations which were tested
are listed in figure 3.

Subsonlec wall-interference effects, as shown in reference T, were
small enough to require no correctlons. Interference caused by wall-
reflected shock waves at Mach numbers of 1.06 to 1.15 are known to be
present; however, no assessment of their effects has been made.

Apart from possible systematic errors resulting from neglecting the
above corrections, the probable errors in the data, as determined by a
root-mean~sgquare analysis of data scatter, are considered to be as
follows:

CDF = *0.005
CDB = +0.004
M = :|:0.003

RESULTS AND DISCUSSION

The interference created by a sting support has been shown in
reference 1 to result from two causes. These are, first, the inter-
ference to the flow resulting from the proximity of the sting flare,
referred to as the "length effect," and, second, the interference to the
flow resulting from the presence of the constant diameter sting, referred
to as the "dlameter effect."” It is known that these two interference
effects have criticel limits. These are, first, the critical sting-
length to base-diameter retio (1/Dp),,, defined as the minimum 1/Dp for
obtaining the same Cp. or.C as would be obtalned for an "infinite"
length sting, and, second, the critical sting-~diameter to base-diameter
ratio (d4/Dp),,, defined as the meximm d/Dp for obtaining the same
CDF or CDB a8 would be obtained for a sting of zero diameter.
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Effect of Sting Length

Boattail model.~ The variations of drag coefficient with 1/Dg for
the 1/2~ and l-inch-dismeter stings are presented in figures 4(a) and (b),
respectively. It is seen that the sting interference caused a reductilon
of foredrag coefficient. The magnitude of this interference increased
from Q.6 Mach number and reasched a maximum near sonic speed. With fur-
thur increase in speed, the Interference diminished quite rapidly. As
would be expected, the magnitude of the interference due to length effect
was amplified by the increased sting flare angle.

The variations of (I/DB)cr for foredrag with Mach number for the
1/2- and l-inch~dismeter stings are presented in figures 5(a) and (v),
respectively. Critical values of Z/DB increased slightly with increas-
ing speeds to a maximum at approximately 095 Mach number. With further
incresse in speed, (Z/DB)cr decreassed very rapidly. It is also noted

that the values of (I/DB)cr of the l-inch-diameter sting were greater

than those of the 1/2-inch~diameter sting. The critical values of 1/DB
of this investigation for a body of revolution are in good agreement with
those of reference 1 for a wing-body model.

Typical pressure distribution measurements for three values of I/DB
are presented in figure 6« The interference, in the form of pressure
disturbances, was propagated upstream for a considerable distance at
subsonic speeds, but was limited to the rear of the model at supersonic
speeds. The magnitudes of these disturbances were progressively
diminished with upstream distance.

Typical variations of the base drag coefficient with 1/ are
gshown in figure Te A decrease 1In sting length caused a decrease in base
drag coefficient, the magnitude of which increased with sting flare
angle. Theoretically, the sting flare can be represented by & distribu-
tlon of sources whose strengths are determined by the sting flare size.
Tunnell, in reference 1, showed that by this method the (Y,/DB)cr for
base drag could be estimated at subsonic speeds. This theoretical esti-
mate 1s shown in figure 7 for 6 = 12°, It is seen that the theoretical
(1/DB)o, compare quite well with the experimental values. As mentioned
in reference 7, numerical agreement of base drag would not be expected
since the theory neglected the presence of the model.

The variations of (1/Dp),, for base drag coefficient with Mach
number are presented in figure 8. It is seen that the values of (7./DB)cr
for base drag are approximately 0.5 to 1.0 greater than those for fore-
drage Since the base is closer to the source of the disturbance, this
result should be expected.

Cylindrical models—~ For the cylindrical model, the foredrag coeffi-~
cient was unaeffected by the sting support (fige 9), indicating that the
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interference field was confined to the cylindrical afterbody. Typlcal
pressure distributions, presented in figure 10, indicate that the lnter-
ference effects were Iindeed limited to the rear of the model. The inter=-
ference effects were quite similar to those of the boattall model, but
were smeller. For Mach numbers of 1.2 and higher, the interference '
effects were negligible, even for I/DB = 0o However, for the model at
positions other than symmetricelly in iine with the free stream, an
interference effect would be expected.

The variations of base drag coefficient with 1/Dp (fig. 11) were
similar to those for the boattall model. However, the increments in base
drag coefficient were larger due to the larger base area. Theoretical
end experimental values of (Z/DB)cr compare quite well., Variations of
(1/DB),, for base drag with Mach number (l-inch-dismeter sting) are
shown gn figure 12 The trends are similar to those for the boattail

model. The maximum ('L/DB)cr for 1 inch sting and 12° sting flare was 5¢3.

Effect of Sting Diameter

Boattail model.- The variations of foredrag coefficlent with d/Dg
are shown in figure 13. All tests were made at Z/DB ratios greater
than critical for all sting dlameters in order that the length effects
would be negligible. The interference effects were small and, in general,
the foredrag decreased with increase in sting dismeter. For Mach numbeérs
over 1,10, (d/DB),, Wes approximately 0.65 and at Mach number 1.k,
(3/DB),, wae approximately 1.0 (ie.e., no interference). This agrees
with the result of reference 3 which showed that there was no foredrag
interference due to sting diameter at a Mach number of l.5. Typical
pressure distributions at four d/Dp ratios and the integrated boattail
dreg values are presented in figures 1k and 15, respectively.

The dlameter effect on the base drag coefficlent is shown in fig-
ure 16. The base drag increased with decreasing d/DB ratioc. At sub-
gonic speeds, there was a small intexrference effect for all stings '
testeds At Mach numbers of 1.2 and l.4, (a/Dp) p» Wes approximately O.3.
Small discrepancies between the data for the stgng and sting plus side
support are due to mutual interferences between the two supports.

Cylindrical model.~ As would be expected, there was no interference
in foredrag due to sting diameter effect for the entire Mach number
range (fige 1T7)}. Also, the pressure distributions over the afterbody
were not affected by changes in sting dismeter as shown in figure 18.

The variations of base drag coefficient with d/Dp are shown in
figure 19. It is seen that the base drag was affected by all sting
dlameters. A mutual interference between the sting and side support is

Pl
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apparent at transonic speeds. Another phenomenon is that the base drag
coefficient (iee., base pressure) changed sbruptly when 4/Dp changed
from zero to a finite value.

CONCIL.USIONS

The results of the tests show the following effects of sting-support
interference on the foredrag and base drag of the boatteil and the
cylindrical model:

le The maximum sting=-support interference effects occurred at
approximately 0.95 Mach number and were substantislly smaller at
supersonic speeds.

2. PFor the boattail model tested, foredrag end base drag data for
a sting flare angle of 12° ana sting-diameter to base-~diameter ratio of
0.87 were free from sting=-length interference when the sting length was
greater than 6.0 and 6.5 base diameters, respectively. However, there
was always an interference on base drag from the sting diameter.

3+ For the cylindricel model tested, the foredrag was independent
of the sting supporte However, the base drag was affected by the sting
diameter, but was not affected by sting length for lengths greater than
55 base dlameters.

Ames Aeronautical Laboratory
National Advisory Committee for Aeronautics
Moffett Field, Calif., Sept. 9, 1957
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Figure 2.~ Models and support systems investigated.
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Figure 18.~ Typicel pressure distributions for various sting-dismeter to
base-diasmeter ratlos; cylindrical model; 6 = 12°; 1/bp>(1/Dp) or®
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Figure 19.- Variations of base drag coefPicient with sting-dlameter to base-dilameter ratio;
eylindrical model; 6 = 12% 1/Dp>(1/Dp), ..
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